

INNUENDO Platform

A novel cross-sectorial platform for the integration of genomics in
surveillance of foodborne pathogens

Multinational outbreaks of foodborne pathogens cause considerable threats to
European public health. Implementing whole genome sequencing (WGS) in routine
surveillance and outbreak investigations is becoming a strategic goal for many
public health authorities all over the world. With this in mind we developed
the initiative INNUENDO, which aims to deliver a cross-sectorial framework for
the integration of bacterial WGS in routine surveillance and epidemiologic
investigations.

INNUENDO platform is divided into two distinct applications that communicate
between each other. The first one, the INNUENDO frontend server,
comprises the user web interface and mechanisms to allow secure user
authentication with LDAP and data storage into a dedicated database. It also
communicates with the INNUENDO process controller, which was developed with
the aim of working as a bridge to allow running analytical procedures on a
laptop or in a High Performance Computer (HPC), with the help of SLURM
process manager and Nextflow.

There is also a docker-compose version of the platform that can be easily
installed with a few commands.

[image: _images/INNUENDO_schema.png]

Contents

The documentation of the INNUENDO Platform follows the below structure:

	Dependencies

	Installation

	Docker-Compose

	Usage

	Admins: Troubleshooting and Backup

Dependencies

	Dependencies List

Installation

	Nginx

	Allegrograph

	PostgreSQL

	LDAP

	SLURM

	Frontend Server

	Controller

	Nextflow

	FlowCraft

Docker-Compose

	Docker-Compose

Usage

	Set a new Species

	Set a legacy profiles database

	Set Protocols

	Set Workflows

Admins: Troubleshooting and Backup

	Backing up Data

	Inspecting Platform Logs

	Troubleshooting

REST API

	REST API

Dependencies List

The INNUENDO Platform is composed of a set of modules that communicate
between each other by RESTful APIs. However, there are also other
dependencies that are required so that the servers can run as expected.

All those components described bellow are necessary for a multi-machine and
individual component installation. You can also install all the application
using this approach or by using the Docker-Compose module developed for this
purpose.

Main modules and their dependencies

*Described on parent page

	
	Frontend Server

	
	Nginx

	NodeJS*

	Bower*

	Allegrograph client*

	
	Process Controller Server

	
	Nginx

	Nextflow

	FlowCraft

	Allegrograph client

	
	Reports Application

	
	Nginx

	NodeJS*

	Bower*

	
	SLURM

	
	MariaDB*

	Munge*

	
	LDAP

	
	LDAP server*

	phpldapadmin*

	LDAP client (third party authentication)*

Nginx

Nginx is a web-server used to allow communication between different machines
and expose the Frontend application to the web if required.

Each Application has a RESTful API used for the communication. The route for
each of these applications needs to be mapped into the nginx configuration
file for each independent machine.

Installation

Install the Nginx software from the package manager.

sudo apt-get install nginx

Create a new configuration file

Add a new configuration file named innuendo.com which will be used to allow
Nginx to be set as a reverse proxy for the AllegroGraph, INNUENDO_REST_API
application and Reports application.

Fill with the following.

server {
 listen 80 default_server;
 listen [::]:80 default_server;

 listen 443 ssl;
 server_name _;

 ssl_certificate /etc/nginx/ssl/nginx.crt;
 ssl_certificate_key /etc/nginx/ssl/nginx.key;

 location /app {
 proxy_pass http://localhost:5000;
 }

 location / {
 proxy_pass http://localhost:10035;
 }

 # Use this location if the INNUENDO_PROCESS_CONTROLLER is on the same
 # machine as the INNUENDO_REST_API. Otherwise, comment this route.
 location /jobs {
 proxy_pass http://localhost:5001;
 }

 location /ldap/ {
 rewrite ^/ldap/(.*) /$1 break;
 proxy_pass http://localhost:81;
 }

 location /reportsApp/ {
 rewrite ^/reportsApp/(.*) /$1 break;
 proxy_pass http://localhost:82;
 }

}

For the INNUENDO Reports application, create a reports.com file and add the
following.

server {
 listen 82;
 server_name localhost;

 #charset koi8-r;

 #access_log logs/host.access.log main;
 root /usr/src/app;
 index index.html index.htm;

 location / {
 try_files $uri /index.html;
 }
}

If the INNUENDO_PROCESS_CONTROLLER is on a different machine, create also a
innuendo.com file and add the following.

server {
 listen 80 default_server;
 listen [::]:80 default_server;

 listen 443 ssl;
 server_name _;

 ssl_certificate /etc/nginx/ssl/nginx.crt;
 ssl_certificate_key /etc/nginx/ssl/nginx.key;

 location /jobs {
 #rewrite ^/jobs/(.*) /$1 break;
 proxy_pass http://localhost:5001;
 }
}

Create a SSL certificate

If a encrypted connection is required, you will need to generate an SSL
certificate. Do that in all the independent machines that require an
encrypted connection, such as the machine with the INNUENDO_REST_API.
Do that with the following commands.

sudo mkdir /etc/nginx/ssl
sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout /etc/nginx/ssl/nginx.key -out /etc/nginx/ssl/nginx.crt

Add to sites-available

For the configuration files be used by Nginx, they need to be located into
the sites-available folder. You can do that with the following commands.

Move the configuration file to the sites-available folder of Nginx
mv innuendo.com /etc/nginx/sites-available/

Move the reports configuration file to the sites-available folder of Nginx
mv reports.com /etc/nginx/sites-available/

Enter the sites-available folder
cd /etc/nginx/sites-available/

Link the innuendo.com file to one in the sites-enabled folder
ln -s /etc/nginx/sites-available/innuendo.com /etc/nginx/sites-enabled/

Link the reports.com file to one in the sites-enabled folder
ln -s /etc/nginx/sites-available/innuendo.com /etc/nginx/sites-enabled/

Restart Nginx

Restart Nginx so that the changes can take place.

sudo service restart nginx

Allegrograph

Allegrograph is a triplestore database used in the INNUENDO Platform to store
relationships between everything, from strains in projects to the processes
that are run on those strains in a specific project.

Currently it uses an unpaid version with store to about 1 million triples. If
required, a paid version can be obtained to obtain more storage.

Installation

Install some general dependencies.

sudo apt-get update
sudo apt-get install -y git python-pip libpq-dev libcurl4-openssl-dev python-dev libsasl2-dev libldap2-dev libssl-dev wget

Get Allegrograph server installer from the INNUENDO releases.

Create a directory to store the files
mkdir allegrograph

Enter the directory
cd allegrograph

Download the server files
wget https://github.com/bfrgoncalves/INNUENDO_files/releases/download/1.0.0/agraph-6.0.2-linuxamd64.64.tar.gz

Uncompress the downloaded files.

tar zxf agraph-6.0.2-linuxamd64.64.tar.gz

Install the Allegrograph server in an non-interactive way. You can change the
file locations and username by changing the inputs in the directives.

agraph-6.0.2/install-agraph ./agraph --non-interactive \
 --config-file "./agraph/lib/agraph.cfg" \
 --data-dir "./agraph/data" \
 --log-dir "./agraph/log" \
 --pid-file "./agraph/data/agraph.pid" \
 --runas-user "innuendo" \
 --create-runas-user \
 --port 10035 \
 --super-user "innuendo" \
 --super-password "innuendo_allegro"

Launch the allegrograph server. It needs to be running for the Frontend
server and the Controller to work.

./agraph/bin/agraph-control --config /Allegrograph/agraph/lib/agraph.cfg start

PostgreSQL

PostgreSQL is the default database used in the INNUENDO Platform for data
storage. It needs to be installed in the same machine as the Frontend server
or configured in such a way that the Frontend server can access to it.

Installation

sudo apt-get update
sudo apt-get install postgresql postgresql-contrib

Create Postgres User

Enter with the default “postgres” user and create a new user to be used in
the Platform.
Change the version according to the installed postgres version. Is
recommended to use postgres version < 10.

sudo -u postgres /usr/lib/postgresql/9.X/bin/createuser innuendo

Create the Database

Launch psql with the default postgres user.

sudo -u postgres psql postgres

Inside psql, set a password for the default postgres user.

postgres=# \password postgres

Change the permissions of the previously created user to allow the creation
of databases.

postgres=# ALTER USER innuendo CREATEDB;

Create the innuendo database.

postgres=# CREATE DATABASE innuendo OWNER innuendo;

Exit psql.

postgres=# \q

Change Configuration file

Locate the postgreSQL pg_hba.conf file. It has all the information regarding
access security to the database. It is required to change some of the
parameters.

The file should be at /etc/postgresql/9.X/main/

Open it and replace all the METHOD column to trust

Restart postgreSQL.

sudo service postgresql restart

Set password for the INNUENDO user

Launch psql with the created user.

sudo -u innuendo psql innuendo

Inside psql, set a password for the innuendo user.

postgres=# \password innuendo

Exit psql.

postgres=# \q

Change Configuration file (AGAIN)

Open the pg_hba.conf file and replace all METHOD column to md5.

Restart postgreSQL.

sudo service postgresql restart

Create/Load the database structure

Now you can load the database structure using a set of commands defined by the
Flask-Migrate package. It should be available after installing the Frontend
server and all its dependencies.

Inside de INNUENDO_REST_API folder run.

Initialize the database and build a migrations directory
./manage.py db init --multidb

Sets the new version of the database
./manage.py db migrate

Recreates the database with the newest version
./manage.py db upgrade

LDAP

LDAP is a centralized authentication system that allow users to authenticate
in multiple applications only using a single account. It requires the
installation of a server application in the service provider machine and
clients in all the machines that want to authenticate.

Before installing LDAP, define an LDAP domain that will be used for the
server creation and for client authentication.

Install LDAP Server

To install the LDAP server, run the following command.

sudo apt-get install slapd ldap-utils

Choose these options on the installer
Omit openLDAP config: No
base DN of the LDAP directory: innuendo.com
organization name: innuendo
Database backend to use: HDB
Database removed when slapd is purged: No
MOve old database: Yes
Allow LDAPv2 protocol: No

For an easier integration with LDAP and monitoring, it is advised to install
phpldapadmin, an application that provides a web-interface to deal with LDAP
without using the command line. To install, run the following.

sudo apt-get install phpldapadmin

You can follow the instructions on this tutorial for an easier configuration.
https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-openldap-and-phpldapadmin-on-an-ubuntu-14-04-server

In phpldapadmin, do the following steps:

	
	Create two Organizational Units.

	
	groups

	users

	
	Add two Posix Groups to the groups entry created.

	
	admin

	innuendo_users

	
	Add Generic User Accounts.

	
	Add email to the account

	Add it to the admin or innuendo_users

Install LDAP Client

To install the LDAP client needed to authenticate to the server, follow the
tutorial in the link bellow.

https://www.digitalocean.com/community/tutorials/how-to-authenticate-client-computers-using-ldap-on-an-ubuntu-12-04-vps

Change new User Skel structure

Is necessary to change the skel of user creation so that some folders are
created upon user definition. They are required to store the fastq files and
files belonging to job submission.

Go to the skel folder and do the following.

Enter skel folder
cd /etc/skel
Create ftp and jobs folder
sudo mkdir ftp jobs
Add files folder
sudo mkdir ftp/files

After completing these steps, two files are required to change the
permissions when creating the folders for the users.

Create a file named change_ldap_user_permissions_innuendo.sh and add the
following.

#!/bin/sh
chown root:root /mnt/innuendo_storage/users/$PAM_USER
chown root:root /mnt/innuendo_storage/users/$PAM_USER/ftp

chown ubuntu:ubuntu /mnt/innuendo_storage/users/$PAM_USER/jobs

This supposes an innuendo_storage folder inside the /mnt folder and a user
running the application called ubuntu. To know more about how to mount
folders between machines check the Configure NFS section.

After creating the permissions file, add it to the pam common-session file at
/etc/pam.d/common-session to trigger the file permissions substitution.

/etc/pam.d/common-session - session-related modules common to all services
#
This file is included from other service-specific PAM config files,
and should contain a list of modules that define tasks to be performed
at the start and end of sessions of *any* kind (both interactive and
non-interactive).
#
As of pam 1.0.1-6, this file is managed by pam-auth-update by default.
To take advantage of this, it is recommended that you configure any
local modules either before or after the default block, and use
pam-auth-update to manage selection of other modules. See
pam-auth-update(8) for details.

here are the per-package modules (the "Primary" block)
session [default=1] pam_permit.so
here's the fallback if no module succeeds
session requisite pam_deny.so
prime the stack with a positive return value if there isn't one already;
this avoids us returning an error just because nothing sets a success code
since the modules above will each just jump around
session required pam_permit.so
The pam_umask module will set the umask according to the system default in
/etc/login.defs and user settings, solving the problem of different
umask settings with different shells, display managers, remote sessions etc.
See "man pam_umask".
session optional pam_umask.so
and here are more per-package modules (the "Additional" block)
session required pam_unix.so
session optional pam_ldap.so
session optional pam_systemd.so
end of pam-auth-update config

session required pam_mkhomedir.so skel=/etc/skel umask=0022
session optional pam_exec.so /usr/local/bin/change_ldap_user_permissions_innuendo.sh

After replacing the required lines in the files, run the following command to
restart the ldap client service.

sudo /etc/init.d/nscd restart

Setup SFTP (SSH) with LDAP

For Secure File Transfer, we will use the properties of SSH to allow the file
tranfer. For that, we need to change the properties of the SSH configuration
file.

Open the file with the following.

sudo nano /etc/ssh/sshd_config

At the end of the file, replace the Subsystem line and add the two Match Group
entries described bellow. This will only allow SFTP connection of the innuendo
users and will only allow to access to their home directory.

#Subsystem sftp /usr/lib/openssh/sftp-server
Subsystem sftp internal-sftp

Set this to 'yes' to enable PAM authentication, account processing,
and session processing. If this is enabled, PAM authentication will
be allowed through the ChallengeResponseAuthentication and
PasswordAuthentication. Depending on your PAM configuration,
PAM authentication via ChallengeResponseAuthentication may bypass
the setting of "PermitRootLogin without-password".
If you just want the PAM account and session checks to run without
PAM authentication, then enable this but set PasswordAuthentication
and ChallengeResponseAuthentication to 'no'.
UsePAM yes

Match Group innuendo-users
 ChrootDirectory %h/ftp
 AllowTCPForwarding no
 X11Forwarding no
 ForceCommand internal-sftp

Match Group admin
 ChrootDirectory %h/ftp
 AllowTCPForwarding no
 X11Forwarding no
 ForceCommand internal-sftp

After replacing the required lines in the file, restart SSH.

sudo /etc/init.d/ssh restart

SLURM

SLURM is a cluster management and job scheduling system that is used in the
INNUENDO Platform to control job submission and resources between machines or
in individual machines.

It requires a Master node, which will control all other nodes, and Slaves,
which will run the jobs controlled by the master.

Installation

SLURM requires a set of software dependencies to work. We will need to
install MariaDB (Only on the Master) for the SLURM Accounting module and also
Munge for the communication between each machine (On each machine).

sudo apt-get install mariadb-server mariadb-devel
sudo apt-get install munge munge-libs munge-devel

Starting with Munge, first need to create a secret key on the Server for the
communication between machines. First, we install rng-tools to properly create
the key.

sudo apt-get install rng-tools
rngd -r /dev/urandom

Now, we create the secret key. You only have to do the creation of the secret
key on the server.

/usr/sbin/create-munge-key -r

Create key and change permissions and ownership
dd if=/dev/urandom bs=1 count=1024 > /etc/munge/munge.key
chown munge: /etc/munge/munge.key
chmod 400 /etc/munge/munge.key

After the secret key is created, you will need to send this key to all of the
compute nodes.

Example sending the key to a slave node called compute-1. You might
need to change the name with the machine domain
scp /etc/munge/munge.key root@compute-1:/etc/munge

Now, we SSH into every node and correct the permissions as well as start the
Munge service.

Change key permissions
chown -R munge: /etc/munge/ /var/log/munge/
chmod 0700 /etc/munge/ /var/log/munge/

Start Munge service on the computing nodes
systemctl enable munge
systemctl start munge

To test Munge, you can try to access another node with Munge from your master
node.

Example access to node compute-1
munge -n
munge -n | unmunge
munge -n | ssh compute-1 unmunge
remunge

After all other dependencies are installed, you can now install SLURM with
the following command.

sudo apt-get install slurm-llnl

SLURM Configuration

For SLURM configuration, we need to create a slurm.conf file and distribute
it between all machines. We also need to define the slurmdbd.conf for the
SLURM accouting.

Example slurm.conf

slurm.conf
#
See the slurm.conf man page for more information.
#
ClusterName=linux
ControlMachine=slurmctld
ControlAddr=slurmctld
#BackupController=
#BackupAddr=
#
SlurmUser=slurm
#SlurmdUser=root
SlurmctldPort=6817
SlurmdPort=6818
AuthType=auth/munge
#JobCredentialPrivateKey=
#JobCredentialPublicCertificate=
StateSaveLocation=/var/lib/slurmd
SlurmdSpoolDir=/var/spool/slurmd
SwitchType=switch/none
MpiDefault=none
SlurmctldPidFile=/var/run/slurmd/slurmctld.pid
SlurmdPidFile=/var/run/slurmd/slurmd.pid
ProctrackType=proctrack/linuxproc
#PluginDir=
CacheGroups=0
#FirstJobId=
ReturnToService=0
#MaxJobCount=
#PlugStackConfig=
#PropagatePrioProcess=
#PropagateResourceLimits=
#PropagateResourceLimitsExcept=
#Prolog=
#Epilog=
#SrunProlog=
#SrunEpilog=
#TaskProlog=
#TaskEpilog=
#TaskPlugin=
#TrackWCKey=no
#TreeWidth=50
#TmpFS=
#UsePAM=
#
TIMERS
SlurmctldTimeout=300
SlurmdTimeout=300
InactiveLimit=0
MinJobAge=300
KillWait=30
Waittime=0
#
SCHEDULING
SchedulerType=sched/backfill
#SchedulerAuth=
#SchedulerPort=
#SchedulerRootFilter=
SelectType=select/cons_res
SelectTypeParameters=CR_CPU_Memory
FastSchedule=1
#PriorityType=priority/multifactor
#PriorityDecayHalfLife=14-0
#PriorityUsageResetPeriod=14-0
#PriorityWeightFairshare=100000
#PriorityWeightAge=1000
#PriorityWeightPartition=10000
#PriorityWeightJobSize=1000
#PriorityMaxAge=1-0
#
LOGGING
SlurmctldDebug=3
SlurmctldLogFile=/var/log/slurm/slurmctld.log
SlurmdDebug=3
SlurmdLogFile=/var/log/slurm/slurmd.log
JobCompType=jobcomp/filetxt
JobCompLoc=/var/log/slurm/jobcomp.log
#
ACCOUNTING
JobAcctGatherType=jobacct_gather/linux
JobAcctGatherFrequency=30
#
AccountingStorageType=accounting_storage/slurmdbd
AccountingStorageHost=slurmdbd
AccountingStoragePort=6819
AccountingStorageLoc=slurm_acct_db
#AccountingStoragePass=
#AccountingStorageUser=
#
COMPUTE NODES
NodeName=c1 Procs=2 Sockets=2 CoresPerSocket=1 RealMemory=6800 State=UNKNOWN
NodeName=c2 Procs=2 Sockets=2 CoresPerSocket=1 RealMemory=6800 State=UNKNOWN
#
PARTITIONS
PartitionName=normal Default=yes Nodes=c1 Shared=YES State=UP
PartitionName=nextflow Nodes=c2 Shared=YES State=UP
PartitionName=chewBBACA Nodes=c1 Shared=YES State=UP QOS=chewbbaca

Once the server node has the slurm.conf correctly, we need to send this file to
the other compute nodes.

Example transfer to the slurm compute-1
scp slurm.conf root@compute-1:/etc/slurm/slurm.conf

Example slurmdbd.conf

#
Example slurmdbd.conf file.
#
See the slurmdbd.conf man page for more information.
#
Archive info
#ArchiveJobs=yes
#ArchiveDir="/tmp"
#ArchiveSteps=yes
#ArchiveScript=
#JobPurge=12
#StepPurge=1
#
Authentication info
AuthType=auth/munge
#AuthInfo=/var/run/munge/munge.socket.2
#
slurmDBD info
DbdAddr=slurmdbd
DbdHost=slurmdbd
#DbdPort=6819
SlurmUser=slurm
#MessageTimeout=300
DebugLevel=4
#DefaultQOS=normal,standby
LogFile=/var/log/slurm/slurmdbd.log
PidFile=/var/run/slurmdbd/slurmdbd.pid
#PluginDir=/usr/lib/slurm
#PrivateData=accounts,users,usage,jobs
#TrackWCKey=yes
#
Database info
StorageType=accounting_storage/mysql
StorageHost=mysql
StorageUser=slurm
StoragePass=password
StorageLoc=slurm_acct_db

Now, we will configure the server Master node. We need to make sure that the
server has all the right configurations and files.

Check for log files existence and permissions
mkdir /var/spool/slurmctld
chown slurm: /var/spool/slurmctld
chmod 755 /var/spool/slurmctld
touch /var/log/slurmctld.log
chown slurm: /var/log/slurmctld.log
touch /var/log/slurm_jobacct.log /var/log/slurm_jobcomp.log
chown slurm: /var/log/slurm_jobacct.log /var/log/slurm_jobcomp.log

We also need to configure all the compute nodes. We need to make sure that
all the compute nodes have the right configurations and files.

Check for log files existence and permissions
mkdir /var/spool/slurmd
chown slurm: /var/spool/slurmd
chmod 755 /var/spool/slurmd
touch /var/log/slurmd.log
chown slurm: /var/log/slurmd.log

Use the following command to make sure that slurmd is configured properly on
the compute machines.

sudo /etc/init.d/slurmd

Use the following command to launch the slurmdbd on the server.

sudo /etc/init.d/slurmdbd

Use the following command to launch the slurm controller on the master server.

sudo /etc/init.d/slurmcltd

Testing SLURM

To display the compute nodes use the following.

scontrol show nodes

Frontend Server

The Frontend server of the INNUENDO Platform is the application responsable
for serving the static files to the user, interact with the potsgreSQL
database, and send requests to the Controller server to submit jobs.

Installation

Good practice to install application specific dependencies is to first create
a virtual environment, which will aggregate all the required dependencies
for a specific application.

Because of that, the first thing to do is to install python virtualenv.

sudo apt-get install python-virtualenv

The code for the Frontend server is located at github and can be obtained
using git.

git clone https://github.com/bfrgoncalves/INNUENDO_REST_API.git

To create the virtual environment, run the application inside the
INNUENDO_REST_API folder.

cd INNUENDO_REST_API

Create virtual environment
virtualenv flask

requirements.txt

The requirements.txt file is the file with all the required python
dependencies for the application. To install them, run the following command
inside the INNUENDO_REST_API folder.

flask/bin/pip install -r requirements.txt

Due to some lack of some dependencies, you might also need to install the
following python packages described into the following links:

https://stackoverflow.com/questions/11618898/pg-config-executable-not-found
https://stackoverflow.com/questions/28253681/you-need-to-install-postgresql-server-dev-x-y-for-building-a-server-side-extensi
https://stackoverflow.com/questions/23937933/could-not-run-curl-config-errno-2-no-such-file-or-directory-when-installing
https://stackoverflow.com/questions/21530577/fatal-error-python-h-no-such-file-or-directory
http://thefourtheye.in/2013/04/20/installing-python-ldap-in-ubuntu/

Bower Components

Bower is a package manager used to fetch all the client-side components required
to create the user interface. It requires nodeJS for the installation so we
need to install nodeJS before installing Bower and the client-side dependencies.

Get nodeJS and install
curl -sL https://deb.nodesource.com/setup_6.x | sudo -E bash -
sudo apt-get install -y nodejs

Install Bower
npm install -g bower

Install Bower components by running bower install inside the
INNUENDO_REST_API/app folder.

Running the APP

To run the application, we first need to add the allegrograph client location
to the path. To do it, install the Allegrograph client and run the following
command.

export PYTHONPATH=/full/path/for/agraph-6.2.1-client-python/src/

Then, we need to run the worker.py` to allow classification and to send
requests to PHYLOViZ Online and we need to run the run.py to launch the
INNUENDO_REST_API application.

cd /path/to/INNUENDO_REST_API
./worker.py &
./run.py

Controller

Good practice to install application specific dependencies is to first create
a virtual environment, which will aggregate all the required dependencies
for a specific application.

Because of that, the first thing to do is to install python virtualenv.

sudo apt-get install python-virtualenv

The code for the Frontend server is located at github and can be obtained
using git.

git clone https://github.com/bfrgoncalves/INNUENDO_PROCESS_CONTROLLER.git

To create the virtual environment, run the application inside the
INNUENDO_PROCESS_CONTROLLER folder.

cd INNUENDO_PROCESS_CONTROLLER

Create virtual environment
virtualenv flask

requirements.txt

The requirements.txt file is the file with all the required python
dependencies for the application. To install them, run the following command
inside the INNUENDO_PROCESS_CONTROLLER folder.

flask/bin/pip install -r requirements.txt

Due to some lack of some dependencies, you might also need to install the
following python packages described into the following links:

https://stackoverflow.com/questions/12982486/glib-compile-error-ffi-h-but-libffi-is-installed
https://stackoverflow.com/questions/22414109/g-error-trying-to-exec-cc1plus-execvp-no-such-file-or-directory

Running the APP

To run the application, we first need to add the allegrograph client location
to the path. To do it, install the Allegrograph client and run the following
command.

export PYTHONPATH=/full/path/for/agraph-6.2.1-client-python/src/

Then, we need to run the run.py to launch the INNUENDO_PROCESS_CONTROLLER
application.

./run.py

Nextflow

Nextflow is a workflow manager that enables scalable and reproducible scientific
workflows using software containers.
An overview of how to install and its requirements can be found on they
documentation.

https://www.nextflow.io/docs/latest/index.html

However, for a simple installation, you can simply run the following commands.

wget -qO- https://get.nextflow.io | bash

This will install nextflow on the current directory and now you will need to
add it to the path. Can simply move the nextflow executable to the
/usr/local/bin

mv nextflow /usr/local/bin

You can now execute nextflow pipelines.

FlowCraft

Flowcraft is used in the INNUENDO Platform as the pipeline builder, which
generates the pipelines according to the available protocols. Besides that,
the flowcraft web-application is also used for pipeline process inspection
and visualization of reports.

Installation

For the pipeline builder installation, check the Flowcraft
[documentation](https://flowcraft.readthedocs.io/en/latest/?badge=latest)

For the install the Flowcraft webapp installation for pipleine inspection
report visualization, follow the bellow steps:

Clone Flowcraft webapp repository
git clone https://github.com/assemblerflow/flowcraft-webapp.git && cd flowcraft-webapp

Install requirements (pipenv and >=python3.6 is required)
cd flowcraft-webapp
pipenv install --system --deploy --ignore-pipfile

Install frontend dependencies
cd flowcraft-webapp && yarn install --network-timeout 1000000 && exit

Construct required databases databases (postgreSQL is required)
python3 manage.py makemigrations
python3 manage.py migrate

Build frontend required file
yarn run build

Lauch the application
python3 manage.py runserver 0.0.0.0:6000

To configure the service, checkout how to do it by going here.

Docker-Compose

Docker-compose [https://docs.docker.com/compose/] and the use of
Docker [https://docs.docker.com/] allows running all the required INNUENDO
Platform components in a controller environment (containers) in a very
simple way.

Since it uses the docker-images as built using the developed Dockerfiles
that act as a recipe for the installation of all components, it releases
that burden from the user.

Installation

For the docker-compose version of the INNUENDO Platform you will need to
install the following software.

	Docker

	Docker-Compose

On Ubuntu

First, add the GPG key for the official Docker repository to the system.

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

Add the Docker repository to APT sources.

sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

Next, update the package database with the Docker packages from the newly
added repo.

sudo apt-get update

Install Docker.

sudo apt-get install -y docker-ce

Docker should now be installed, the daemon started, and the process enabled
to start on boot. Check that it’s running.

sudo systemctl status docker

Next we will install docker-compose. We will check the current release and if
necessary, update it in the command below.

sudo curl -L https://github.com/docker/compose/releases/download/1.18.0/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose

Next we will set the permissions.

sudo chmod +x /usr/local/bin/docker-compose

Then we can verify that the installation was successful by checking the version.

docker-compose --version

On Windows and Mac

Install the executables from the docker-compose page.

https://docs.docker.com/compose/install/

Configuration

Each component of the INNUENDO Platform can be configured by modifying its
configuration file. Configuration files are located at configs/ and are
files required for the Platform to work.

NOTE: Modifying these files might lead to corruption of the application.
Proceed with care.

Each file belonging to each component is described bellow.

Frontend Server

The Frontend server has one configuration file located at
configs/app/config_frontend.py that has a set of variables required for this
module to work in cooperation with the process controller.

Below defaults are for the docker-compose version.

	FRONTEND_IP

	IP address of the machine, default: web

	phyloviz_root

	Root address of PHYLOViZ Online. default: http://web:82

	AGRAPH_IP

	AllegroGraph server IP adress. default: web

	CURRENT_ROOT

	Current address of the frontend application.
default: http://’+FRONTEND_IP+’/app

	JOBS_IP

	INNUENDO Process Controller IP address. default: web

	JOBS_ROOT

	Job submission route. default: http://’+JOBS_IP+’/jobs/’

	FILES_ROOT

	Route to get information about fastq files. default:http://’+JOBS_IP+’/jobs/fastqs/’

	REPORTS_URL

	Reports application route. default: “http://localhost/reports”

	SECRET_KEY

	Secret key for flask-security hash.

	SECURITY_PASSWORD_HASH

	Flask-security type of hash used.

	SECURITY_PASSWORD_SALT

	Flaks-security salt used.

	ADMIN_EMAIL

	Email of the platform administrator. default: innuendo@admin.com

	ADMIN_NAME

	Administrator name. default: Admin

	ADMIN_USERNAME

	ADministrator username. default: innuendo_admin

	ADMIN_PASS

	Administrator password.

	ADMIN_GID

	Group identifier for admins. default: 501

	REDIS_URL

	Redis queue URL. default: redis://redis:6379

	SECURITY_REGISTERABLE

	Allow Flask-security view to register. default: False

	SECURITY_RECOVERABLE

	Allow Flask-security view to recover password. default: True

	SECURITY_CHANGEABLE

	Allow Flask-security view to change password. default: True

	SECURITY_FLASH_MESSAGES

	SHow Flask-security messages. default: True

	FAST_MLST_PATH

	Path for fast-mlst application used for profile
classification and search. default: /Frontend/fast-mlst

	NEXTFLOW_TAGS

	Currently available FlowCraft tags. More information on FlowCraft
documentation.

	DATABASE_USER

	User owner of the postgreSQL database. default: innuendo

	DATABASE_PASS

	Password of the postgreSQL user. default: innuendo_database

	database_uri

	URI for the wgMLST profile database. default: ‘postgresql://’+DATABASE_USER+’:’+DATABASE_PASS + ‘@db_mlst/mlst_database’

	innuendo_database_uri

	URI for the innuendo database. default: ‘postgresql://’+DATABASE_USER+’:’+DATABASE_PASS+’@db_innuendo/innuendo’

	SQLALCHEMY_BINDS

	Databases that bind to SQLAlchemy.

	SQLALCHEMY_MIGRATE_REPO

	Location to store and update database files. default: os.path.join(basedir, ‘db_repository’)

	SQLALCHEMY_TRACK_MODIFICATIONS

	Track database modification. default: True

	WTF_CSRF_ENABLED

	Enable CSRF. default: False

	app_route

	Application entry route. default: ‘/app’

	LDAP_PROVIDER_URL

	LDAP client IP definition. default: LDAP_IP

	LDAP_PROTOCOL_VERSION

	LDAP protocol version. default: 3

	baseDN

	Base repository reference. default: dc=innuendo,dc=com

	LOGIN_METHOD

	Platform login method. Used to distinguish between LDAP authentication
and single user authentication used in the docker version. default: None

	LOGIN_GID

	Login group identifier. Used in case of docker version. default: 501

	LOGIN_HOMEDIR

	Single user home directory. Used in case of docker version.
default: /INNUENDO/

	LOGIN_USERNAME

	Single user username. Used in case of docker version.
default: innuendo_user

	LOGIN_PASSWORD

	Single user password. Used in case of docker version. default:
innuendo_user

	LOGIN_EMAIL

	Single user email. Used in case of docker version.
default: innuendo@innuendo.com

	ALL_SPECIES

	All supported species. default: [“E.coli”,”Yersinia”,”Campylobacter”,”Salmonella”]

	allele_classes_to_ignore

	chewBBACA report on profile to replace with 0.

	wg_index_correspondece

	Path to the wg index file used by fast-mlst for profile search up to x
differences. Example: {“E.coli”: “/INNUENDO/inputs/indexes/ecoli_wg”}

	core_index_correspondece

	Path to the core index file used by fast-mlst for profile search up to x
differences. Example: {“E.coli”: “/INNUENDO/inputs/indexes/ecoli_core”}

	wg_headers_correspondece

	Path to the list of the wg loci for each species. Example: {“E.coli”: “/INNUENDO/inputs/core_lists/ecoli_headers_wg.txt”}

	core_headers_correspondece

	Path to the list of the core loci for each species. Example: {“E.coli”: “/INNUENDO/inputs/core_lists/ecoli_headers_core.txt”}

	core_increment_profile_file_correspondece

	Location of the file with the core profiles for each species. Used to
contruct the search index. Example: {“E.coli”: “/INNUENDO/inputs/indexes/ecoli_core_profiles.tab”}

	wg_increment_profile_file_correspondece

	Location of the file with wg profiles for each species. Used to contruct
the search index. Example: {“E.coli”: “/INNUENDO/inputs/indexes/ecoli_wg_profiles.tab”}

	classification_levels

	Classification levels for each specie. Number of profile differences.
Example: {“E.coli”: [8, 112, 793]}

	AG_REPOSITORY

	Name of the AllegroGraph repository. default: innuendo

	AG_USER

	AllegroGraph user. default: innuendo

	AG_PASSWORD

	AllegroGraph password. default: innuendo_allegro

Controller Server

The Controller server has one configuration file located at
configs/app/config_process.py that has a set of variables required for this
module to work in cooperation with the frontend and the workflow managers.

Below defaults are for the docker-compose version.

	REDIS_URL

	Redis queue URL. default: redis://redis:6379

	ASPERAKEY

	Aspera key location. default: ~/.aspera/connect/etc/asperaweb_id_dsa.openssh

	FTP_FILES_FOLDER

	Location of the files folder in relation to the user home
directory. default: ftp/files

	NEXTFLOW_RESOURCES

	Specifications of each nextflow process. Can be used to specify each
parameter of any given process. Example: { “integrity_coverage”:{“memory”: r“‘2GB’”,”cpus”: “1”}

	SERVER_IP

	IP address of the machine. default: web

	FRONTEND_SERVER_IP

	IP address of the frontend server. default: web

	DEFAULT_SLURM_CPUS

	Default SLURM CPUs used when a process is not specified. default: 8

	NEXTFLOW_PROFILE

	Nextflow profile to use. Those are specified in the FlowCraft software.
default: desktop

	NEXTFLOW_GENERATOR_PATH

	Location of the FlowCraft software executable. default:
/Controller/flowcraft/flowcraft/flowcraft.py

	NEXTFLOW_GENERATOR_RECIPE

	FlowCraft recipe to use. It defines the set of processes that can be used
and their relationships. default: innuendo

	FASTQPATH

	Location of the fastq files in the user directory structure. Used by
FlowCraft to search for paired end reads. default: “data/_{1,2}.”

	JOBS_ROOT_SET_OUTPUT

	Route used to set the output status of processes. Example: http://+SERVER_IP+/jobs/setoutput/

	JOBS_ROOT_SET_REPORT

	Route used to set the reports and store them on the database. Example: http://+FRONTEND_SERVER_IP+/app/api/v1.0/jobs/report/

	CHEWBBACA_PARTITION

	Partition name used by SLURM to launch chewBBACA processes. Can only run
one chewBBACA at a time. default: chewBBACA

	CHEWBBACA_SCHEMAS_PATH

	Location of the chewBBACA schemas. default: /INNUENDO/inputs/schemas

	CHEWBBACA_TRAINING_FILE

	Location of prodigal training files for each specie. Example: {
“E.coli”: “/INNUENDO/inputs/prodigal_training_files/prodigal_training_files/Escherichia_coli.trn”,
}

	SEQ_FILE_O

	SeqTyping FILE_O location. default: {“E.coli”: “/INNUENDO/inputs/serotyping_files/escherichia_coli/1_O_type.fasta”}

	SEQ_FILE_H

	Seqtyping FILE_H location. default: {“E.coli”: “/INNUENDO/inputs/serotyping_files/escherichia_coli/2_H_type.fasta”}

	wg_index_correspondece

	Path to the wg index file used by fast-mlst for profile search up to x
differences. Example: {“E.coli”: “/INNUENDO/inputs/indexes/ecoli_wg”}

	core_index_correspondece

	Path to the core index file used by fast-mlst for profile search up to x
differences. Example: {“E.coli”: “/INNUENDO/inputs/indexes/ecoli_core”}

	wg_headers_correspondece

	Path to the list of the wg loci for each species. Example: {“E.coli”: “/INNUENDO/inputs/core_lists/ecoli_headers_wg.txt”}

	core_headers_correspondece

	Path to the list of the core loci for each species. Example: {“E.coli”: “/INNUENDO/inputs/core_lists/ecoli_headers_core.txt”}

	core_increment_profile_file_correspondece

	Location of the file with the core profiles for each species. Used to
contruct the search index. Example: {“E.coli”: “/INNUENDO/inputs/indexes/ecoli_core_profiles.tab”}

	wg_increment_profile_file_correspondece

	Location of the file with wg profiles for each species. Used to contruct
the search index. Example: {“E.coli”: “/INNUENDO/inputs/indexes/ecoli_wg_profiles.tab”}

	AG_REPOSITORY

	AllegroGraph repository name. default: innuendo

	AG_USER

	AllegroGraph username. default: innuendo

	AG_PASSWORD

	AllegroGraph user password. default: innuendo_allegro

Flowcraft Configuration

The Flowcraft webapp application has two configuration files located at
configs/flowcraft that has a set of variables required for this
module to work in cooperation with the frontend.

Below are the defaults for the docker-compose version.

	reportsRoute

	Route location to fetch for reports. default: http://localhost/reports

Running the INNUENDO Platform

Retrieving the docker-compose version

	To launch the docker-compose version of the INNUENDO Platform, first need to get

	the INNUENDO_docker repository from github that has all the

required Dockerfiles and structures for communication between the
containers and the user file system.

git clone https://github.com/bfrgoncalves/INNUENDO_docker.git

Launching the application

Running the INNUENDO Platform is very simple. You can lauch it with a single command.

Access the INNUENDO docker repository
cd </path/to/INNUENDO_docker>

Launch the application
docker-compose up

The last command will pull all the required images first then it will
launch all the Docker containers. They will will communicate between each other
by a docker network that is built by default with docker-compose.

Downloading legacy data and building profile databases

The application provides a script to download all the required files to
perform comparisons with some already publicly available strains. This is
made through the download of the following data available here [https://zenodo.org/communities/innuendo]:

	chewBBACA schemas

	Legacy strain metadata (for each species)

	Legacy strain profiles (for each species)

	Serotyping files

	Prodigal training files

These data will be available under ./inputs and will be mapped to the
docker containers running the application.

The script also build the required files for a rapid comparison between
profiles using fast-mlst [https://github.com/B-UMMI/fast-mlst] and
populates the mlst_database.

To run the script, type the following command:

Enter repository directory
cd <innuendo_docker_directory>/build_files

Run script to get legacy input files
./get_inputs.sh

These steps might take up to 1h depending on the available internet
connection and the host machine.

Loading data from a pre-defined backup

We offer an option to load a predefined set of protocols and workflows, together
with test projects and strains. Currently, this option is only available for
machines with above 8 cpus and 8gb of RAM. This is due to the backup expecting
at least those resources for at least one of the predefined protocols.

To load the predefined data, do the following:

Enter the build_files directory
cd <innuendo_docker_directory>/build_files

Run the script to load the data
./init_8cpu_components.sh

NOTE: The above script will delete ALL data available in the AllegroGraph
database and INNUENDO general database. It will then replaced by the predefined
data.

Mapping data into the Docker containers

To map data between the user filesystem and the containers, docker-compose
already has a directive to deal with that action.

Inside the docker-compose.yml you got all the required attributes to launch
the container and the interaction between other containers.

Below is described the directives used to launch a service in docker-compose.

Service for the INNUENDO frontend. Requires the config files for the
application and mapping of the fastq files
frontend:
 # this service uses the dockerfile inside the Frontend directory
 build: ./components/Frontend/
 # Allow run services inside as root
 privileged: true
 # Allow restart on failure
 restart: on-failure
 # Directive to map files and folders to the container. In this case,
 all files before : are files in the user file system. The files after
 : are the location of those files in the container.
 volumes:
 - ./configs/app/config_frontend.py:/Frontend/INNUENDO_REST_API/config.py
 - user_data:/INNUENDO
 - ./inputs/fastq:/INNUENDO/ftp/files
 - ./inputs/v1/classifications:/INNUENDO/inputs/v1/classifications
 - ./inputs/v1/core_lists:/INNUENDO/inputs/v1/core_lists
 - ./inputs/v1/indexes:/INNUENDO/inputs/v1/indexes
 - ./inputs/v1/legacy_metadata:/INNUENDO/inputs/v1/legacy_metadata
 - ./inputs/v1/legacy_profiles:/INNUENDO/inputs/v1/legacy_profiles
 - singularity_cache:/mnt/singularity_cache
 # Ports mapping between container and host
 ports:
 - "5000:5000"
 # Depends on other docker-compose services to work
 depends_on:
 - "allegro"
 - "db_innuendo"
 - "db_mlst"
 - "web"
 # Arguments to give to the docker-entrypoint.sh
 command: ["init_allegro", "build_db", "init_app"]

As seen above, the files can be mapped with the volumes directive.

Fastq files from the user must be placed into the inputs/fastq
folder to be linked with the INNUENDO Platform docker version.

Backing up/ Build data

We provide a series of scripts to backup/build all the required databases
used in the docker-compose version of the INNUENDO Platform. These files are
located at inside the images and need to be triggered after the application
is running. This is made using the docker exec command on an already
running container.

Backing up/ Build postgreSQL databases

There are four postgreSQL databases used in the INNUENDO Platform that can
be backed up: innuendo, mlst_database, assemblerflow, and
phyloviz.

All databases backups can be made using a single command for each database.

Execute script on frontend container to backup database
Information on database, username and pass are located in the
docker-compose.yml file
docker exec innuendo_docker_frontend_1 backup_dbs.sh backup <database> <username> <pass> <backup_file_name>

The build command to restore a database to a given backup state is very
similar to the above.

Execute script on frontend container to build database
docker exec innuendo_docker_frontend_1 backup_dbs.sh build <database> <username> <pass> <backup_file_name>

Backing up/ Build AllegroGraph databases

Other database type used in the INNUENDO Platform is a triplestore and it is
also required for the application to retrive to a given state if required.

To backup AllegroGraph, it is only required to run a single command

Execute script on frontend container to backup allegrograph
Information on database, username and pass are located in the
docker-compose.yml file
docker exec innuendo_docker_frontend_1 build_allegro.py backup <backup_file_name>

The build command is similar to the above and is required to move the
application to a given state.

Execute script on frontend container to backup allegrograph
docker exec innuendo_docker_frontend_1 build_allegro.py build <backup_file_name>

Customizing Entrypoints

Entrypoints are the files run on container creation with a series of
predefined commands.

On each component/ folder of the application you have an entrypoint.sh
file
and a Dockerfile.

By modifying the commands inside the entrypoint.sh you can change the
default behaviour when the container for that component launches.

Useful docker commands

Bellow are some docker commands that might be useful to interact with the
containers.

Show active containers.

docker-compose ps

Enter container.

docker exec -it container_name bash

List virtual volumes.

docker volume ls

List images.

docker images

Remove images

docker rmi image_name

Set a new Species

The INNUENDO Platform is species dependent. Which means that any project,
protocol or workflow needs to be associated with a species. The scope of the
INNUENDO Project was to develop analysis strategies from 4 target species:
Escherichia coli, Yersinia enterocolitica, Salmonella enterica and
Campylobacter jejuni. However, the platform is scalable to add any other
species upon some configuration. In this example we are going to exemplify on
how to add speciesA.

NOTE: Most of the modifications required are in the INNUENDO_REST_API application.

1 - Add a new database model

Each species in the INNUENDO Platform has a dedicated wgMLST profile database.
As so, a new model for it needs to be added inside the app/models/models.py file
of the INNUENDO_REST_API app.

Example of adding species A. Inside models.py file near the other mlst
database classes

class SpeciesA(db.Model):
 """
 Defines the species specific storage of profiles and its classification.
 Salmonella specification.
 """

 # Name of the database table
 __tablename__ = "speciesA"

 # The name of the mlst_database
 __bind_key__ = 'mlst_database'

 # Required fields on each wgMLST species database
 id = db.Column(db.Integer(), primary_key=True)
 name = db.Column(db.String(255), unique=True)
 version = db.Column(db.String(255))
 # Platform classifiers
 classifier_l1 = db.Column(db.String(255))
 classifier_l2 = db.Column(db.String(255))
 classifier_l3 = db.Column(db.String(255))
 allelic_profile = db.Column(JSON)
 strain_metadata = db.Column(JSON)
 # Tell if it is legacy or from the platform
 platform_tag = db.Column(db.String(255))
 timestamp = db.Column(db.DateTime)

This new model needs to be loaded with manage.py in case of installation
from source. In case of the docker-compose verison, it will be loaded
automatically on start.

2 - Import model on app_configuration.py

The model needs then to be imported to be used by the application. This can be
made by importing it at app/app_configuration.py of the INNUENDO_REST_API app.
The species_correspondece dictionary needs also to be updated to allow
association of the models with a key.

Example of adding speciesA to the model imports at app/app_configuration.py
from app.models.models import Ecoli, Yersinia, Salmonella, Campylobacter, SpeciesA

Change the species_correspondece object to associate model with a key
database_correspondece = {
 "E.coli": Ecoli,
 "Yersinia": Yersinia,
 "Salmonella": Salmonella,
 "SpeciesA": SpeciesA
}

3 - Update the config.py files

The config.py files need also to be updated in order for the application to
know which species should use, the classification levels,
and which files use for wgMLST database.
These modifications are required on both INNUENDO_REST_API and
INNUENDO_PROCESS_CONTROLLER.

Updating config.py on INNUENDO_REST_API application

Example of config.py updates for speciesA

Add speciesA to the list with all the available species
NOTE: the name needs to be the same as the key used in the
database_correspondece on step 2
ALL_SPECIES = [
 "E.coli",
 "Yersinia",
 "Campylobacter",
 "Salmonella",
 "SpeciesA"
]

Add the Association between species ID in the platform with the species name
SPECIES_CORRESPONDENCE = {
 "E.coli": "Escherichia coli",
 "Yersinia": "Yersinia enterocolitica",
 "Salmonella": "Salmonella enterica",
 "Campylobacter": "Campylobacter jejuni"
 "SpeciesA": "Species A real name"
};

Add the wgMLST fast-mlst index file correspondence
wg_index_correspondece = {
 "v1": {
 "E.coli": "/INNUENDO/inputs/v1/indexes/ecoli_wg",
 "Yersinia": "/INNUENDO/inputs/v1/indexes/yersinia_wg",
 "Salmonella": "/INNUENDO/inputs/v1/indexes/salmonella_wg",
 "SpeciesA": "/INNUENDO/inputs/v1/indexes/speciesA_wg"
 }
}

Add Path to the core index file used by fast-mlst for profile search up to x
differences
core_index_correspondece = {
 "v1": {
 "E.coli": "/INNUENDO/inputs/v1/indexes/ecoli_core",
 "Yersinia": "/INNUENDO/inputs/v1/indexes/yersinia_core",
 "Salmonella": "/INNUENDO/inputs/v1/indexes/salmonella_core",
 "SpeciesA": "/INNUENDO/inputs/v1/indexes/speciesA_core"
 }
}

Add Path to the list of the wg loci for each species
wg_headers_correspondece = {
 "v1": {
 "E.coli": "/INNUENDO/inputs/v1/core_lists/ecoli_headers_wg.txt",
 "Yersinia": "/INNUENDO/inputs/v1/core_lists/yersinia_headers_wg.txt",
 "Salmonella": "/INNUENDO/inputs/v1/core_lists/salmonella_headers_wg.txt",
 "SpeciesA": "/INNUENDO/inputs/v1/core_lists/speciesA_headers_wg.txt"
 }
}

Add Path to the list of the core loci for each species
core_headers_correspondece = {
 "v1": {
 "E.coli": "/INNUENDO/inputs/v1/core_lists/ecoli_headers_core.txt",
 "Yersinia": "/INNUENDO/inputs/v1/core_lists/yersinia_headers_core.txt",
 "Salmonella": "/INNUENDO/inputs/v1/core_lists/salmonella_headers_core.txt",
 "SpeciesA": "/INNUENDO/inputs/v1/core_lists/speciesA_headers_core.txt"
 }
}

Add Location of the file with the core profiles for each species. Used to
contruct the search index
core_increment_profile_file_correspondece = {
 "v1": {
 "E.coli": "/INNUENDO/inputs/v1/indexes/ecoli_core_profiles.tab",
 "Yersinia": "/INNUENDO/inputs/v1/indexes/yersinia_core_profiles.tab",
 "Salmonella": "/INNUENDO/inputs/v1/indexes/salmonella_core_profiles.tab",
 "SpeciesA": "/INNUENDO/inputs/v1/indexes/speciesA_core_profiles.tab"
 }
}

Add Location of the file with wg profiles for each species. Used to contruct the
search index
wg_increment_profile_file_correspondece = {
 "v1": {
 "E.coli": "/INNUENDO/inputs/v1/indexes/ecoli_wg_profiles.tab",
 "Yersinia": "/INNUENDO/inputs/v1/indexes/yersinia_wg_profiles.tab",
 "Salmonella": "/INNUENDO/inputs/v1/indexes/salmonella_wg_profiles.tab",
 "Campylobacter": "/INNUENDO/inputs/v1/indexes/campy_wg_profiles.tab"
 "SpeciesA": "/INNUENDO/inputs/v1/indexes/speciesA_wg_profiles.tab"
 }
}

Updating config.py on INNUENDO_PROCESS_CONTROLLER application

Add chewBBACA prodigal training file if not assigned in the protocol
CHEWBBACA_TRAINING_FILE = {
 "E.coli": "/INNUENDO/inputs/prodigal_training_files/prodigal_training_files/Escherichia_coli.trn",
 "Yersinia": "/INNUENDO/inputs/prodigal_training_files/prodigal_training_files/Yersinia_enterocolitica.trn",
 "Campylobacter": "/INNUENDO/inputs/prodigal_training_files/prodigal_training_files/Campylobacter_jejuni.trn",
 "Salmonella": "/INNUENDO/inputs/prodigal_training_files/prodigal_training_files/Salmonella_enterica.trn"
 "SpeciesA": "/prodigal/training/file/location"
}

Add name user for chewBBACA in case not assigned in the protocol
CHEWBBACA_CORRESPONDENCE = {
 "E.coli": "Escherichia coli",
 "Yersinia": "Yersinia enterocolitica",
 "Campylobacter": "Campylobacter jejuni",
 "Salmonella": "Salmonella enterica",
 "SpeciesA": "Species a"
}

Add Torsten's mlst correspondence
MLST_CORRESPONDENCE = {
 "E.coli": "ecoli",
 "Yersinia": "yersinia",
 "Campylobacter": "campylobacter",
 "Salmonella": "senterica",
 "SpeciesA": "speciesa"

}

Add the wgMLST fast-mlst index file correspondence
wg_index_correspondece = {
 "v1": {
 "E.coli": "/INNUENDO/inputs/v1/indexes/ecoli_wg",
 "Yersinia": "/INNUENDO/inputs/v1/indexes/yersinia_wg",
 "Salmonella": "/INNUENDO/inputs/v1/indexes/salmonella_wg",
 "SpeciesA": "/INNUENDO/inputs/v1/indexes/speciesA_wg"
 }
}

Add Path to the core index file used by fast-mlst for profile search up to x
differences
core_index_correspondece = {
 "v1": {
 "E.coli": "/INNUENDO/inputs/v1/indexes/ecoli_core",
 "Yersinia": "/INNUENDO/inputs/v1/indexes/yersinia_core",
 "Salmonella": "/INNUENDO/inputs/v1/indexes/salmonella_core",
 "SpeciesA": "/INNUENDO/inputs/v1/indexes/speciesA_core"
 }
}

Add Path to the list of the wg loci for each species
wg_headers_correspondece = {
 "v1": {
 "E.coli": "/INNUENDO/inputs/v1/core_lists/ecoli_headers_wg.txt",
 "Yersinia": "/INNUENDO/inputs/v1/core_lists/yersinia_headers_wg.txt",
 "Salmonella": "/INNUENDO/inputs/v1/core_lists/salmonella_headers_wg.txt",
 "SpeciesA": "/INNUENDO/inputs/v1/core_lists/speciesA_headers_wg.txt"
 }
}

Add Path to the list of the core loci for each species
core_headers_correspondece = {
 "v1": {
 "E.coli": "/INNUENDO/inputs/v1/core_lists/ecoli_headers_core.txt",
 "Yersinia": "/INNUENDO/inputs/v1/core_lists/yersinia_headers_core.txt",
 "Salmonella": "/INNUENDO/inputs/v1/core_lists/salmonella_headers_core.txt",
 "SpeciesA": "/INNUENDO/inputs/v1/core_lists/speciesA_headers_core.txt"
 }
}

Add Location of the file with the core profiles for each species. Used to
contruct the search index
core_increment_profile_file_correspondece = {
 "v1": {
 "E.coli": "/INNUENDO/inputs/v1/indexes/ecoli_core_profiles.tab",
 "Yersinia": "/INNUENDO/inputs/v1/indexes/yersinia_core_profiles.tab",
 "Salmonella": "/INNUENDO/inputs/v1/indexes/salmonella_core_profiles.tab",
 "SpeciesA": "/INNUENDO/inputs/v1/indexes/speciesA_core_profiles.tab"
 }
}

Add Location of the file with wg profiles for each species. Used to contruct the
search index
wg_increment_profile_file_correspondece = {
 "v1": {
 "E.coli": "/INNUENDO/inputs/v1/indexes/ecoli_wg_profiles.tab",
 "Yersinia": "/INNUENDO/inputs/v1/indexes/yersinia_wg_profiles.tab",
 "Salmonella": "/INNUENDO/inputs/v1/indexes/salmonella_wg_profiles.tab",
 "Campylobacter": "/INNUENDO/inputs/v1/indexes/campy_wg_profiles.tab"
 "SpeciesA": "/INNUENDO/inputs/v1/indexes/speciesA_wg_profiles.tab"
 }
}

Update the expected genome size of SpeciesA
species_expected_genome_size = {
 "E.coli": "5",
 "Yersinia": "4.7",
 "Salmonella": "4.6",
 "Campylobacter": "1.6",
 "SpeciesA": "GenomeSize"
}

To know on how to create the required legacy database files, check the
Set legacy database section.

Set a legacy profiles database

The INNUENDO Platform allows adding profiles already analysed to the wgMLST
database for comparison. These profiles must have an associated metadata and the
three level profile classification.

This can be made by updating the following files of the INNUENDO_REST_API
application, at the INNUENDO_REST_API/build_files folder. The files are:

	build_indexes.sh - Gets profiles, metadata, and classification. It also adds the information to the new wgMLST database.

	get_profiles_and_training.sh - Gets the used wgMLST schema.

The above files should be changed to add according to the modifications
required to insert the data inside the database. Check the documentation inside
the above files for more information regarding each step.

An example of each of the input files can be found:

	Allelic profiles .tab file [https://github.com/bfrgoncalves/INNUENDO_schemas/releases/download/1.1/Yenterocolitica_wgMLST_alleleProfiles.tsv/] (Yersinia enterocolitica)

	Metadata file [https://github.com/bfrgoncalves/INNUENDO_schemas/releases/download/1.1/Yenterocolitica_metadata.txt/] (Yersinia enterocolitica)

	List of schema core genes [https://github.com/bfrgoncalves/INNUENDO_schemas/releases/download/1.1/Yenterocolitica_cgMLST_2406_listGenes.txt/] (Yersinia enterocolitica)

	Three level classification [https://github.com/bfrgoncalves/INNUENDO_schemas/releases/download/1.1/Yentero_correct_classification.txt/] (Yersinia enterocolitica)

Set Protocols

In the INNUENDO Platform, protocols are the basic unit for running processes.
They are the building blocks to construct Workflows, which can then be
applied to strains in our projects.

Protocol creation is responsibility of the INNUENDO platform administrators.

Protocols are composed of a Type, the name of the used Software,
a Nextflow Tag, Parameters, and a Name. Each protocol name MUST
be unique.

Protocol Types

Protocol types are defined by NGSOnto and are a way of classifying the
available protocols. Each type can have different attributes.

	de-novo assembly protocol

	Sequencing quality control protocol

	Allele Call Protocol

	sequencing Protocol

	DNA Extraction protocol

	Pathotyping Protocol

	Sequence cutting protocol

	mapping assembly protocol

	Filtering protocol

	Library Preparation Protocol

used Software

When creating a protocol, other field that needs to exist is the used
Software. It is required for the Platform to know which software you are
going to use on that protocol in case some extra steps are required after or
before running it. The available tags are:

	reads_download

	seq_typing

	patho_typing

	integrity_coverage

	fastqc (fastqc_trimmomatic)

	true_coverage

	fastqc_2 (fastqc)

	integrity_coverage_2 (check_coverage)

	spades

	process_mapping

	pilon

	mlst

	sistr

	chewBBACA

	abricate

Each of these tags are closely related to the Nextflow Tags chosen. So, to
have a good agreement between Software and Nextflow Tags, pair them together.

Nextflow Tags

Nextflow Tags are the specific names that FlowCraft [https://github.com/assemblerflow/flowcraft] requires to build
Nextflow pipelines based on the available software at the INNUENDO Platform.

Below you have all the available Nextflow Tags retrieved from FLowCraft that
can be used in the INNUENDO Platform:

=> reads_download
 input_type: accessions
 output_type: fastq
 dependencies: None
=> seq_typing
 input_type: fastq
 output_type: None
 dependencies: None
=> patho_typing
 input_type: fastq
 output_type: None
 dependencies: None
=> integrity_coverage
 input_type: fastq
 output_type: fastq
 dependencies: None
=> fastqc_trimmomatic
 input_type: fastq
 output_type: fastq
 dependencies: integrity_coverage
=> true_coverage
 input_type: fastq
 output_type: fastq
 dependencies: None
=> fastqc
 input_type: fastq
 output_type: fastq
 dependencies: None
=> check_coverage
 input_type: fastq
 output_type: fastq
 dependencies: None
=> spades
 input_type: fastq
 output_type: fasta
 dependencies: integrity_coverage
=> process_spades
 input_type: fasta
 output_type: fasta
 dependencies: None
=> assembly_mapping
 input_type: fasta
 output_type: fasta
 dependencies: None
=> pilon
 input_type: fasta
 output_type: fasta
 dependencies: assembly_mapping
=> mlst
 input_type: fasta
 output_type: fasta
 dependencies: None
=> abricate
 input_type: fasta
 output_type: None
 dependencies: None
=> chewbbaca
 input_type: fasta
 output_type: None
 dependencies: None
=> sistr
 input_type: fasta
 output_type: None
 dependencies: None

Protocol Name

The protocol name is the identifier that will appear when choosing protocols
to apply to a Workflow. Each protocol name MUST be unique. Also, try to
make a reference for the nextflow tag used in the protocol name in order to
establish a better organization regarding available protocols.

For more information regarding FlowCraft, checkout this link:
https://assemblerflow.readthedocs.io/en/dev/index.html

Set Workflows

In the INNUENDO Platform, Workflows are the merge of one or more
protocols to build a cascade of events to be applied to you strains. Their
goal is to organize a group of software to be applied and you can then apply
multiple workflows to a strain and build a pipeline according to their specific
Workflow dependencies.

As for Protocols, Workflows also have a predefined set of attributes that
need to be filled in order to be successfully applied to a strain. A workflow
must have a Name, a Dependency, a Type, and the Species
where that workflow will be available.

Workflows are Species dependent so you need to define the workflows that
you want to make available for each species.

Workflow creation is responsibility of the INNUENDO platform administrators.

Workflow Name

Each workflow MUST have a name and it cannot be the same even across
Species. The use of special characters are discouraged.

Workflow Dependency

Workflows can have input dependencies that are required to run them.
Dependencies can be Fastq files, Accession numbers or any one of the
already available workflows. These dependencies will them be used to guide
the user when applying workflows to their strains.

Type

Workflows in the INNUENDO Platform are separated into two types:
Classifier and Procedure.

	Classifier - Procedure to classify non-computing required processes. Used for classification of processes prior to data analysis. Not currently implemented in the INNUENDO Platform.

	Procedure - A procedure is a workflow that can be applied to a strain and run on the data associated to that strain.

Currently, only Procedures can be applied to strains.

Workflow Recipes

For the INNUENDO Platform, there are a set of Workflow recipes that can be
constructed to run software on the strain data in the correct order. They
depend on the created protocols which in the examples below they have the
same name as their Nextflow Tags.

	
	Reads Download:

	
	
	Protocols (1):

	
	reads_download

	
	Serotyping:

	
	
	Protocols (1):

	
	seq_typing

	
	Pathotyping:

	
	
	Protocols (1):

	
	patho_typing

	
	INNUca:

	
	
	Protocols (10):

	
	integrity_coverage

	fastqc_trimmomatic

	true_coverage

	fastqc

	check_coverage

	spades

	process_spades

	assembly_mapping

	pilon

	mlst

	
	chewBBACA:

	
	
	Protocols (1):

	
	chewbbaca

	
	Protocol Parameters:

	
	schema: chewbbaca_schema_folder_name

	
	Abricate:

	
	
	Protocols (1):

	
	abricate

	
	SISTR:

	
	
	Protocols (1):

	
	sistr

Backing up Data

Backing up data is an essential feature on every system and in the INNUENDO
Platform that is no exception. As so, bellow we provide the required commands
to backup all data on the system.

The INNUENDO Platform is composed of 3 databases: The frontend database,
the wgMLST database and the allegrograph database. The first two are
postgreSQL relational databases and the third a triplestore (graph based
database).

Backing up postgreSQL databases

postgreSQL provides a built in tool for backing up its databases. It builds a
file with all the instructions required to rebuild the database in other
instance if required.

To backup the frontend database, run the following command on the machine
running the service:

This command will produce a new file called output_file.db that will
have all the instructions to build the database. Replace
<database_user> and <database_name> by the database owner and the wgMLST
database name.
pg_dump -U <database_user> <database_name> > output_file_frontend.db

To backup the wgMLST database, run the following command on the machine
running the service:

This command will produce a new file called output_file.db that will
have all the instructions to build the database. Replace
<database_user> and <database_name> by the database owner and the wgMLST
database name.
pg_dump -U <database_user> <database_name> > output_file_wgmlst.db

To restore the database, run the following command on the machine running the
postgreSQL service.

The text files created by pg_dump are intended to be read in by the psql program.
Replace <database_user> and <database_name> by the database owner and database name.
psql -U <database_user> <database_name> < output_file.db

The INNUENDO Platform also provides a script for automatic backup of
postgreSQL databases located inside the build_files directory inside
INNUENDO_REST_API.

Parameters
mode: [backup, build]
database: database_name
postgresUser: Postgres username and owner of database
postgresPass: Postgres password
fileLocation: Location of output or input file (depening on the mode
backup_dbs.sh <mode> <database> <postgresUser> <postgresPass> <fileLocation>

Backing up AllegroGraph database

The AllegroGraph database is a different type of database. Is not a
relational database. Instead, it stores relationships between objects in the
form of a graph. It is used on the INNUENDO Platform as the backbone to get
track of relationships between, projects, strains, workflows, processes and
their outputs.

To backup the AllegroGraph database, we can use their web application. To do
that, go to the defined configuration url for the AllegroGraph web
application. There you will need to login as seen bellow with your
AllegroGraph username and password.

[image: ../_images/login_allegro.png]
After logging in, you will enter in a new page with information regarding the
available repositories. You should see the already created repository for
the INNUENDO Platform. In this case, it has the name innuendo.

[image: ../_images/repository_allegro.png]
After clicking on the desired repository, you can export the database by
going to Export store as and select RDF/XML. This will create a file
with the structure of the database that you can then load into AllegroGraph
also using the web application.

[image: ../_images/export_allegro.png]
To do that, on the same page as the Export, there is an option to Import
RDF. Choose the option from an uploaded file and add one file obtained
from the Export option. At the end you should get the repository restored.

[image: ../_images/import_allegro.png]
In addition to the previous steps, the INNUENDO Platform provides a
programmatic way to backup and restore the AllegroGraph database using the
script build_allegro.py located at the build_files directory inside
INNUENDO_REST_API.

Parameters
mode: [backup, build]
fileLocation: Location of the output or input file
#
Steps
Copy build_allegro.py to INNUENDO_REST_API since it requires to be run
on that location.
cp <INNUENDO_REST_API_location>/build_files/build_allegro.py <INNUENDO_REST_API_location>/
Add AllegroGraph client to the PYTHONPATH
export PYTHONPATH="<INNUENDO_REST_API_LOCATION>/agraph-6.2.1-client-python/src"
Run the script
flask/bin/python build_allegro.py <mode> <fileLocation>

Backing up Nextflow runs Data

All processes submitted to the INNUENDO Platform are managed by Nextflow and
SLURM managers. Software runs that they manage are stored in the file system
in directories structures and not in databases. As so, results derived
directly from the software being run stay in those directory structures eg,
raw reads, fasta files and other software outputs. Only post-processed
selected data is sent to the INNUENDO Reports to be visualized.

Data from runs is stored by default in the /<usersStorage>/<user>/<jobs>.

Inside each job folder you will have results and recipes to run the processes
for each strain. Since each pipeline is associated with a strain in a given
project, inside the jobs directory you will find folders with the structure
<project_id>-<pipeline_id>. Inside those folder you can find other folder
called results where all the relevant information regarding that pipeline
is stored.

Runs directory structure

- <usersStorage>
 - <user>
 - <jobs>
 - <project_id>-<pipeline_id>
 - <results>
 - <work>
 - processes generated files
 - executor_command.sh -> To rerun pipeline

Inspecting Platform Logs

Admins of the INNUENDO Platform have some extra features to visualize logs
for each process on every Project. When an admin enters a project he can
visualize the logs by clicking on the Information button available for
each strain on a project, in the Analysis column.

[image: ../_images/info_button.png]
By clicking on that button the admin gets access to the information described
bellow.

FlowCraft Build Log

The INNUENDO Platform builds the pipelines based on the FlowCraft software. It
builds the nextflow files required by using the Nextflow Tags defined when
creating the protocols as inputs.

Information regarding cpu usage, memory, and other directives can also be
passed to FlowCraft when building the pipelines.

python3 /home/ubuntu/innuendo/flowcraft/flowcraft/flowcraft.py build -t reads_download={'pid':1,'cpus':'2','memory':'\'4GB\''} integrity_coverage={'pid':2,'cpus':'1','memory':'\'4GB\''} fastqc_trimmomatic={'pid':3,'cpus':'2','memory':'\'4GB\''} true_coverage={'pid':4,'cpus':'2','memory':'\'4GB\''} fastqc={'pid':5,'cpus':'2','memory':'\'4GB\''} check_coverage={'pid':6,'cpus':'1','memory':'\'4GB\''} spades={'pid':7,'scratch':'true','cpus':'4','memory':'\'4GB\''} process_spades={'pid':8,'cpus':'1','memory':'\'4GB\''} assembly_mapping={'pid':9,'cpus':'2','memory':'\'4GB\''} pilon={'pid':10,'cpus':'2','memory':'\'4GB\''} mlst={'pid':11,'version':'tuberfree','cpus':'1','memory':'\'4GB\''} abricate={'pid':12,'cpus':'2','memory':'\'4GB\''} chewbbaca={'pid':13,'queue':'\'chewBBACA\'','cpus':'8','memory':'\'4GB\''} -o /mnt/innuendo_storage/users/bgoncalves/jobs/8-9/8_9.nf -r innuendo

 Troubleshooting

Troubleshooting

In this section we are going to add some of the possible scenarios that can
cause the admins to interact with the INNUENDO Platform to solve possible
problems.

1 - Web application not showing in the web browser

In case the web application does not show in the web browser, do the
following steps.

	
	Check the internet connection:

	Verify if the user has internet connection since it is required to
interact with the INNUENDO Platform.

	
	Verify if the frontend service is up:

	Check if the frontend server is up by entering the machine with the
frontend application. If the service is not running, start it.

	
	Check if Nginx service is up:

	Check if the Nginx service is running by typing service nginx status.
If is not running, start it by typing service nginx start.

	
	Check the Nginx configuration file:

	If the above step does not work, check the Nginx configuration file for
possible errors.

In case the above steps don’t solve the problem, please contact the developer.

2 - Job submission stuck on waiting animation

In case the loading screen does not disappear after submitting jobs to the
server, do the following steps:

	
	Verify if all services are up:

	Normally this event can be caused by miss-communication between the
frontend application and the process controller. Enter the machine
running the process controller and check if the service is running. If
not, start it.

	
	Check if jobs were submitted:

	Enter the user project and go to the Information section. Check for the
Nextflow Logs and Flowcraft Build Logs. You can also check the submitted
jobs by entering the machine running the process controller and type
squeue to check the jobs running.

	
	Re-run if no jobs were submitted:

	Remove all the workflows applied to the strains with problems, apply
again and re-run the jobs.

In case the above steps don’t solve the problem, please contact the developer.

3- Nextflow aborts a pipeline

Enter the project with with the problematic strains and check the Nextflow
Logs. In case the pipeline being aborted, resubmit it by clicking on the
Retry button which appears below the log. After the submission, refresh the
log tab to verify if it is running.

In case the above steps don’t solve the problem, contact the developer.

4- Profile classification not showing after chewBBACA run

This can happen because the worker service used for classification and
PHYLOViZ Online submission not being running. Enter the machine with the
frontend server installed and check if the worker.py process is running. If
not, start the process.

5- PHYLOViZ Online submission not working

This can happen because the worker service used for classification and
PHYLOViZ Online submission not being running. Enter the machine with the
frontend server installed and check if the worker.py process is running. If
not, start the process.

6- PHYLOViZ Online application not showing

Check if the PHYLOViZ Online services are running. To do that, go to the
machine were PHYLOViZ Online is installed, go to its source code folder and
type pm2 list. If all services (app.js and queue_worker.js) are not
running, launch them by typing:

For the app.js
pm2 start app.js

For the queue_worker.js
pm2 start queue_worker.js

You can always change the memory and cpus allocated to the processes by running:

Restart app.js with 2 cpu allocated and 8GB of memory
pm2 restart app.js -i 2 --node-args="--max-old-space-size=8192"

Restart queue_worker.js with 2 cpu allocated and 8GB of memory
pm2 restart queue_worker.js -i 2 --node-args="--max-old-space-size=8192"

 REST API

REST API

Information on the documented REST API of the INNUENDO REST API and
INNUENDO PROCESS CONTROLLER can be found at INNUENDO API wiki [https://github.com/bfrgoncalves/INNUENDO_docker/wiki].

 Index

Index

 Requirements

Requirements

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/login_allegro.png
AllegroGraph WebView 6.0.2, 1 server warning
Uti

ies User

Username:
Password:

) Stay logged in

User required

Please log in to access this page.

_images/repository_allegro.png
AllegroGraph WebView 6.0.2, 1 server war

Catalogs

system

Repositories

innuendo

Create new repository
Name: e
Restore from a backup

Start session

Session specification: autocommit,) load initfile) s

_images/import_allegro.png
AllegroGraph WebView 6.0.2, 1 server warning repository innuendo

% Repository Queries Ut User innuendo

Repository innuendo — 6,197 statements
[edit description]
Load and Delete Data
o Adda statement
o Delete statements
o Import RDF:

o from an uploaded file
o froma server-side file

_images/info_button.png
Analysis ® | @

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 INNUENDO Platform

 		
 Dependencies List

 		
 Main modules and their dependencies

 		
 Nginx

 		
 Installation

 		
 Create a new configuration file

 		
 Create a SSL certificate

 		
 Add to sites-available

 		
 Restart Nginx

 		
 Allegrograph

 		
 Installation

 		
 PostgreSQL

 		
 Installation

 		
 Create Postgres User

 		
 Create the Database

 		
 Change Configuration file

 		
 Set password for the INNUENDO user

 		
 Change Configuration file (AGAIN)

 		
 Create/Load the database structure

 		
 LDAP

 		
 Install LDAP Server

 		
 Install LDAP Client

 		
 Change new User Skel structure

 		
 Setup SFTP (SSH) with LDAP

 		
 SLURM

 		
 Installation

 		
 SLURM Configuration

 		
 Testing SLURM

 		
 Frontend Server

 		
 Installation

 		
 requirements.txt

 		
 Bower Components

 		
 Running the APP

 		
 Controller

 		
 requirements.txt

 		
 Running the APP

 		
 Nextflow

 		
 FlowCraft

 		
 Installation

 		
 Docker-Compose

 		
 Installation

 		
 On Ubuntu

 		
 On Windows and Mac

 		
 Configuration

 		
 Frontend Server

 		
 Controller Server

 		
 Flowcraft Configuration

 		
 Running the INNUENDO Platform

 		
 Retrieving the docker-compose version

 		
 Launching the application

 		
 Downloading legacy data and building profile databases

 		
 Loading data from a pre-defined backup

 		
 Mapping data into the Docker containers

 		
 Backing up/ Build data

 		
 Backing up/ Build postgreSQL databases

 		
 Backing up/ Build AllegroGraph databases

 		
 Customizing Entrypoints

 		
 Useful docker commands

 		
 Set a new Species

 		
 1 - Add a new database model

 		
 2 - Import model on app_configuration.py

 		
 3 - Update the config.py files

 		
 Set a legacy profiles database

 		
 Set Protocols

 		
 Protocol Types

 		
 used Software

 		
 Nextflow Tags

 		
 Protocol Name

 		
 Set Workflows

 		
 Workflow Name

 		
 Workflow Dependency

 		
 Type

 		
 Workflow Recipes

 		
 Backing up Data

 		
 Backing up postgreSQL databases

 		
 Backing up AllegroGraph database

 		
 Backing up Nextflow runs Data

 		
 Inspecting Platform Logs

 		
 FlowCraft Build Log

 		
 Platform Config

 		
 Nextflow Run Logs

 		
 Troubleshooting

 		
 1 - Web application not showing in the web browser

 		
 2 - Job submission stuck on waiting animation

 		
 3- Nextflow aborts a pipeline

 		
 4- Profile classification not showing after chewBBACA run

 		
 5- PHYLOViZ Online submission not working

 		
 6- PHYLOViZ Online application not showing

 		
 REST API

_images/INNUENDO_schema.png
SFTP connection

Calculation Server Frontend/ DB Server
Machine 2 Machine 1

Client Browser
(Chrome)

PHYLOVIZ Online.
Machine 3

_images/export_allegro.png
